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From consideration of the order-parameter distribution, we propose an observable which makes a clear
distinction between true and quasi-long-range orders in the two-dimensional generalized q-state clock model.
Measuring this quantity by Monte Carlo simulations for q=8, we construct a phase diagram and identify
critical properties across the phase-separation lines among the true long-range order, quasi-long-range order,
and disorder. Our result supports the theoretical prediction that there appears a discontinuous order-disorder
transition as soon as the two phase-separation lines merge.
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The existence of quasi-long-range order �LRO� character-
izes the critical behavior of the two-dimensional XY model
�1–3� as well as its dual, the solid-on-solid �SOS� model to
describe the roughning transition on a surface �4–7�. By
quasi-LRO, we mean that the spin-spin correlation function
decays algebraically, which implies that the system is not
magnetically ordered. We will refer to a phase having such
characteristics as quasiliquid �8�. The lack of true magnetic
order for the XY model is attributed to spin-wave excitations,
which are gapless and thus excited at any finite temperature.
On the other hand, the quasi-LRO is broken by the vortex-
pair unbinding at the Kosterlitz-Thouless �KT� transition
which exhibits an essential singularity. Even though the XY
model assumes the continuous U�1� symmetry in the spin
angle �, essentially the same nature is observed when the
angle is discretized into q possible values over
�=0, 2�

q , . . . , 2��q−1�
q , as long as q is high enough. Such a

discrete-spin system is called the q-state clock model if two
neighboring spins, which have �i=2�ni /q and � j =2�nj /q
with integers ni and nj, respectively, interact via cosine po-
tential V��i−� j�=−J cos��i−� j� with a ferromagnetic cou-
pling constant J�0. One can generalize this interaction with
preserved symmetry, V���=V�−��=V��+2��, into the form
given by the Hamiltonian

H = �
�i,j�

Vp��i − � j� = �
�i,j�

2J

p2�1 − cos2p2	�i − � j

2

� , �1�

where �i is the ith spin angle and the sum runs over nearest
neighbors �9�. It recovers the q-state clock model at p=1 and
approaches the q-state Potts model in the limit of large p
�10�. We denote the system defined by Eq. �1� as the gener-
alized q-state clock model. Since it has been claimed that this
model with p=1 and q�8 precisely reproduces the KT tran-
sition �8�, we set q=8 throughout this work. At the same
time, the discreteness introduces a finite gap in the spin-wave
excitation, making the true LRO realizable at low tempera-
tures �11–14�. These two-phase transitions are connected by
the duality relation, which is exactly established within the
Villain approximation �15�. While the appearance of the

quasi-LRO is readily detected by observables such as Bind-
er’s fourth-order cumulant �5,16� or helicity modulus
�17–19� that of the true LRO has been observed by changes
in specific heat or magnetization �8,12,20�. It is, however,
rather hard to locate the transition temperature using these
quantities, especially for high p values where the quasi-LRO
exists in a very narrow temperature range. Thus alternative
quantities are required, for example, like a direct observation
of the formation of giant clusters �21�. In this Rapid Com-
munication, we show that the transition can be well localized
by a nonlocal order parameter which is obtained from the
average spin direction and which makes a clear distinction
between the true and quasi-LROs. Using this quantity it is
shown that the quasiliquid phase disappears beyond p�2.8,
where the transition becomes discontinuous just as for the
eight-state Potts model.

Let us consider the generalized eight-state clock model
given above on the L�L square lattice with the system size
N=L2. The complex order parameter of this system is de-
fined as

m = N−1�
j

ei�j = 
m
ei�. �2�

As in Ref. �22�, it is instructive to visualize the distribu-
tion of m on the complex plane. The distributions in Fig. 1
are obtained by running Monte Carlo simulations with the
single-cluster update algorithm �23–25�, and each panel rep-
resents a different phase of the eight-state clock model at a
different temperature. In the leftmost panel �Fig. 1�a��, we
see the disordered phase in the high-temperature regime. The
order parameter m exhibits a two-dimensional Gaussian peak
around the origin, which may be regarded as a delta peak at

m
=0 in the thermodynamic limit. Figure 1�b� illustrates the
quasiliquid phase, where the order parameter rotates in the �
direction with nonzero magnitude. Note that both of the dis-
tributions in Figs. 1�a� and 1�b� manifest a continuous rota-
tional symmetry, which is spontaneously broken at a lower
temperature as shown in Fig. 1�c�. One finds a true LRO
being established so that m indicates well-defined directions
selected from the eightfold symmetry.

A major difference between Figs. 1�a� and 1�b� lies in the
distributions of 
m
. The transition between the quasiliquid*Corresponding author; beomjun@skku.edu
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and disordered phases can be detected by means of Binder’s
fourth-order cumulant,

Um = 1 −
�
m
4�

2�
m
2�2 , �3�

where �¯ � represents the thermal average �Fig. 2�a��. The
factor of two in the denominator of Eq. �3� is based on the
fact that �
m
4�=2�
m
2�2 for such a two-dimensional Gauss-
ian distribution as in Fig. 1�a�. We should note that Um does
not detect the transition between the ordered and quasiliquid
phases since they differ only in the angular direction on the
complex plane. Henceforth, we need a quantity capturing the
change along �. In the same spirit as Um, one may define a
cumulant as

U� = 1 −
5��̃4�

9��̃2�2
, �4�

where �̃��2��−1�q� mod 2�� so that U� goes to zero when
the distribution is uniform with respect to �. Or we may
alternatively have

m� = �cos�q��� , �5�

which yields a finite value when � is frozen but again van-
ishes when � is isotropically distributed �Fig. 2�b��. Provided
that the system is nearly ordered with large enough q, we
approximately have ��N−1� j� j from Eq. �2� so that
m���cos�2�n̄�� with n̄=N−1� jnj. By duality, the integer
field nj can be mapped to a charge distribution in the lattice
Coulomb gas �15� and the approximate expression for m�

has been introduced in Ref. �7� to monitor the fugacity of
charged particles under numerical renormalization-group cal-
culations. Since the quasiliquid phase exists between the or-
dered and disordered phases for q=8, we have two separate
transitions at T=Tc1 and Tc2, which are clearly detected by
the above quantities. Note the movements of data points in
Figs. 2�a� and 2�b� with different system sizes. Since the
position of an inflection point, T�, would correspond to
where the transition occurs in the thermodynamic limit, we
may extrapolate them according to the KT scenario,

ln L � 
T� − Tc
−1/2, �6�

to estimate the critical temperatures both for the upper and
lower transitions �Fig. 2�c��. In addition, regarding

�
m
�=L−�/2m̃�L ,T� around Tc1 �26�, we replace the depen-
dency on both of L and T by that on a single variable
m�=m��L ,T� so that

�
m
� = L−�/2f�m�� . �7�

In other words, plotting �
m
�L�/2 against m�, data from dif-
ferent sizes are expected to fall on a single curve if one
correctly selects �. This provides a way to determine � even
without precise knowledge of Tc1 �see also Ref. �27��. The
best fit is found at � /2=0.031�2� as shown in Fig. 2�d�,
while the theoretical value is given as � /2=1 /32=0.03125
at T=Tc1 �14�.

When altering the potential shape by increasing p in Eq.
�1�, one may well expect that the two transitions will even-
tually transform into a single discontinuous transition at a
certain p value as the Potts-model limit is approached. How
this happens can be found by numerical simulations, and a
phase diagram thereby obtained is shown in Fig. 3�a�. It
seems that the two phase-separation lines merge as p ap-
proaches 3.0. A better estimate is obtained by looking at
magnetic susceptibility. Recalling that susceptibility
�=N�kBT�−1��
m
2�− �
m
�2� corresponds to the sum of corre-
lations, we may argue that its divergence implies long-ranged
correlations over the system, a key feature of the quasiliquid
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FIG. 1. �Color online� Distributions of the order parameter m on the complex plane obtained for p=1, q=8, and L=8. We start from the
high-temperature regime and then cool down the system slowly. Here are shown three characteristic distributions, where one finds �a� a
disordered phase at temperature T=1.50, �b� a quasiliquid phase at T=0.70, and �c� an ordered phase at T=0.36, where the temperatures are
given in units of J /kB.
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FIG. 2. �Color online� Double phase transitions for p=1 and
q=8. �a� The transition between quasiliquid and disordered phases
is detected by merging of Um curves. �b� The other transition occurs
between the ordered and quasiliquid phases, which is detected by
m�. �c� Extrapolating positions of inflection points according to the
KT picture, we get Tc1=0.417�3� and Tc2=0.894�1�. �d� Checking
Eq. �7� with � /2=0.031, which best describes the data with a single
curve.
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phase. If p is small enough to exhibit the quasiliquid phase,
susceptibility indeed diverges over a finite temperature
range. For p=2.8, however, we find that data points fall on
��
T−Tc
−1.2 which has only one singular point at T=Tc
�Fig. 3�b��. This Tc is also consistent with the results from
Um and m�. We therefore conclude that the quasiliquid phase
shrinks to a single point at p�2.8. Furthermore, the distri-
bution of energy per spin, E, exhibits double peaks for
p	2.8. By analogy with Um, we introduce the following
quantity:

VE = 1 −
��E − �E��4�

3��E − �E��2�2 . �8�

Recall that if a scalar variable x has a one-dimensional
Gaussian distribution with zero mean, one readily finds
�x4�=3�x2�2. Consequently, VE will vanish when there exists
a single peak positioned at �E�. It will approach a nontrivial
value, however, when the energy distribution has double
peaks on opposite sides of the average value �E�. A similar
attempt to define such a quantity has already been made in
Ref. �26� for characterizing a discontinuous transition. Figure
3�c� shows that VE remains finite at p	2.8, which signals a
change to a discontinuous transition �11,12�.

The concept of universality suggests that the critical prop-
erties will be kept the same in the vicinity of p=1. However,
one may ask if the natures of the transitions between the
ordered and quasiliquid phases and between the quasiliquid
and disordered phases depend on the value of p. Applying
Eq. �7� to higher p values, we find that �=1 /16 cannot be
ruled out even when p approaches 2. However, the quality of
fit severely deteriorates at p higher than 2, possibly due to
that our magnetization data are easily influenced by the prox-
imity of the upper transition. On the other hand, with the
same motivation as in Eq. �7�, we may characterize the upper
transition by means of the following scaling relation �27�:

� = L2−�g�Um� . �9�

This method yields �=0.24�1� at p=1.0 in agreement with
the prediction of 1 /4=0.25 for the KT transition �1�. It is not
very surprising that � tends to be underestimated here if
taking into account the logarithmic correction involved in
susceptibility �28,29�. We observe from our numerical data
that the criticality deviates from the standard KT type below
the merging point. If we take p=2.6, for instance, the best fit
is found at �=0.41 and the size dependence of the transition
temperatures deviates from Eq. �6� �Fig. 3�d��. Still, it re-
mains to be investigated in detail how the critical behavior
begins to change or if the standard KT behavior is recovered
for even larger lattice sizes �L�512� in spite of the data
collapse shown in Fig. 3�d� for lattice sizes up to L=512.

In summary, we have proposed a practical quantity to dis-
tinguish the true and quasi-LROs based on the order-
parameter distribution. Using this quantity, we have provided
a phase diagram on the p-T plane for the generalized eight-
state clock model. It has been shown that a discontinuous
transition appears when the phase-separation lines merge
into one at p�2.8. We have also checked critical properties
along the lines and found changes in scaling behaviors be-
fore reaching the merging point from numerical calculations
up to L=512.
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FIG. 3. �Color online� �a� Phase diagram of the generalized
eight-state clock model. �b� Susceptibility as a function of T at
p=2.8, where the dotted lines describe ��
T−Tc
−1.2, with
Tc=0.17184. �c� VE as a function of T. For each p, system sizes are
given by L=16, 32, 64, and 128 from right to left. �d� Estimation of
� for p=2.6 by Eq. �9�. Seventh-order polynomials are used to find
the best fit, from which �=0.41�4� is estimated. Inset: Tc2 at
p=2.6 against �ln L�−2 up to L=512. It moves slower than predicted
by Eq. �6� as shown in comparison with the straight dotted line.
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